您好!欢迎光临 麥德勝電氣(中國)有限公司
脫硫吸收塔液位測量的幾種方法

覃俊鋒

引  言

       目前大多数烟气脱硫系统采用的是石灰石—石膏湿法脱硫技术,其中吸收塔是进行烟气脱的主要设备,吸收塔液位对脱硫系统的安全可靠运行有着极其重要的作用,但由于吸收塔本体结构的特殊性,無法使用当前主流的液位计进行直接测量。文中介绍目前采用的几种测量吸收塔液位的方法,并分析各种测量方法的优缺点。


      石灰石—石膏法脱硫系统的主要设备是吸收塔,如图1 所示,吸收塔主要由浆液氧化区、吸收区、喷淋层、除雾层、入口烟道及出口烟道组成。常规容器的液位測量可采用在容器顶部安装超声波液位计、雷达液位计或浮子液位计,或在侧壁安装磁翻板液位计加以测量。对于密度受温度影响不大的液体,若是敞口容器,可在容器底部安装壓力變送器,经公式H=(P/ρg)+h 计算后得出;若是密闭容器,则需安装差壓變送器,经公式H=(ΔP/ρg)+h 计算后得出,式中,H 为液位高度,P 为压力,ΔP 为差压,ρ为液体密度,h 为壓力變送器差壓變送器的安裝高度。

图一.png


一、問題産生

       脱硫吸收塔内介质比较复杂,在浆液氧化区内主要是硫酸钙浆液、亚硫酸钙浆液和氧化空气,吸收区内是带正压的烟气和浆液的混合物。由于吸收塔浆池上方是大量的喷淋浆液和烟气混合物,因此無法在顶部安装超声波液位计或雷达液位计进行测量。石灰石—石膏浆液主要有3 点特殊性。

(1)爲保證脫硫效率,漿液含固量高達20%,即使在攪拌器的作用下讓漿液不停的流動,漿池上、下層密度也不均勻。

(2)漿液中的亞硫酸鈣具有很強的黏性,若將儀表探頭伸入其中,亞硫酸鈣慢慢附著在探頭表面,從而影響儀表的正常工作,使測量數據失真。

(3)浆液中含有大量的氧化空气,氧化空气管网一般安装在距塔底约3 m 高的位置,气泡上升过程中随着浆液压强的减小而逐步膨胀,进一步导致吸收塔内浆液上、下层密度的差距。由于浆液的以上特性,若仅在吸收塔侧壁上安装壓力變送器,是無法測量比較准確的液位數據的。此外,浮子液位計和磁翻板液位計更無法適應如此惡劣工況。


二、解決方案

       为了比较准确测量吸收塔液位,目前国内的脱硫系统普遍采用壓力變送器测量吸收塔底部的压力,并安装浆液密度测量装置,将数据远传至DCS(Distributed Control System,集散控制系统)或PLC(Programmable Logic Controller,可编程逻辑控制器)控制系统,然后根据公式H=(P/ρg)+h 计算吸收塔的液位。由于密度测量方法多种多样,但各有特点,且差异较大,直接影响了工程的造价、测量装置的稳定运行程度以及系统运行期间的的维护工作量大小。由于吸收塔液位在脱硫系统中是非常重要的参数,仪表数量按工艺要求均为冗余配置,以下各种测量方法中不再赘述。

(1)裝置一———質量流量計+壓力變送器測量回路。此方法先利用質量流量計實時測量漿液的密度,然後通過壓力變送器測出的壓力值計算吸收塔液位。密度測量回路主要由石膏漿液抽取泵(一用一備)、閥門(抽取泵入口閥、出口閥、沖洗閥、排放閥)、質量流量計、壓力表及管件組成,壓力測量回路主要由壓力變送器、閥門、沖洗管路組成(圖2)。

图二.png

       启动密度测量回路时,需先关闭冲洗阀、排放阀、出口阀,然后打开入口阀,待抽取泵充满浆液后启泵,启泵成功后再打开出口阀,并根据泵出口压力表的指示调节出口阀门至合适的压力,以保证测量管内流速满足测量的需要,又不至于流速过高,导致质量流量計磨損嚴重,縮短儀表的使用壽命。當脫硫系統停運或質量流量計需要維護檢修時,應先停止漿液抽取泵,然後關閉入口閥,打開排放閥,至測量管路內的漿液排盡後,打開沖洗閥,用工藝水將管路沖洗幹淨後即可關閉沖洗閥、排放閥和出口閥。

       压力测量仪表采用一体化隔膜式壓力變送器,一次檢修閥應盡量靠近吸收塔側壁,采樣管應與側壁保持約60°夾角,可減少漿液在測量管路中沈積,以防采樣管堵塞。此外,還應在靠近壓力變送器隔膜處安裝沖洗管路,定時沖洗壓力變送器的膜片、采样管及检修阀门,以确保测量管路的畅通。本方法测量的吸收塔液位应由公式H=(P/ρg)+h 计算后得出。式中,H 为液位计算值,P 为压力,ρ 为质量流量計测出的浆液密度,g 为重力加速度,h 为壓力變送器的安裝高度。

       本法中的质量流量計准確度高,精度可達0.2%,完全滿足脫硫系統的運行要求;無直管段要求,安裝較爲方便;可靠性高,維修率低。利用漿液抽取泵不斷抽取吸收塔中的漿液進行測量,保證了測量數據的實時性。

(2)裝置二———音叉密度計+壓力變送器測量回路。本方法在吸收塔底部側壁上分別安裝音叉密度計和壓力變送器,其中音叉密度計用以測量漿液密度,壓力變送器用以测量浆池底部压力,如图3 所示。

图三.png

        为了保证仪表测量的可靠性及稳定性,安装时应将仪表与吸收塔侧壁保持大约60°夹角,同时应安装冲洗管路,定时冲洗采样管及音叉密度计的傳感器液位由公式H=(P/ρg)+h 计算后得出。式中,H 为液位计算值,P 为压力,ρ 为浆液密度,g 为重力加速度,h 为壓力變送器的安裝高度。

       采用本方法测量时,结构简单,减少了设备故障率,相应也减小了维护工作量,但由于音叉密度计的探头是插入到吸收塔内的,無法安装检修阀门。若出现音叉密度计需要维护检修时,必须等脱硫系统停运并将吸收塔浆液排空后,才能将其拆卸送检。因此建议将音叉密度计冗余配置,以增加本套装置的可靠度。也可定制在线可插拔球阀组件,从而彻底杜绝检修仪表时影响工艺系统运行的情况。

(3)裝置三———差壓變送器+壓力變送器測量回路。本套裝置采用差壓變送器測量漿液的密度,利用壓力變送器测量浆池底部的压力,然后通过公式间接计算出吸收塔液位,如图4 所示。差壓變送器采用隔膜式分体结构,2 个远传膜片安装在吸收塔侧壁合适的位置(高差一般控制在3~5 m),膜片通过毛细管与變送器本體連接。脫硫系統正常運行時漿液的密度大約控制在1120 kg/m3 左右,因此吸收塔浆池介质从工艺水变为正常的石灰石—石膏浆液时,差壓變送器的数据相应从29.4 kPa 上升至32.9 kPa(膜片高差按3 m 设计),变化范围非常小,大约3.5 kPa,若仪表量程为50 kPa,变化范围仅占仪表量程的7%,因此应选择高精度的微差壓變送器

图四.png

      密度计算方法:ρ=ΔP/(gΔH)计算后得出。式中,ρ 为浆液密度计算值,ΔP 为差压,g 为重力加速度,ΔH 为差壓變送器2 个膜片的高度差。液位计算方法:H=(P/ρg)+h 计算后得出。式中,H 为液位计算值,P 为压力,ρ 为密度计算公式中的浆液密度计算值,g 为重力加速度,h 为壓力變送器的安裝高度。

采用本裝置測量漿池液位時,結構簡單,差壓變送器壓力變送器技術也非常成熟可靠,成本也較低。僅需安裝沖洗管路對儀表膜片和采樣管路定時沖洗,維護工作量相對較少。


三、測量裝置比較

以上3 套装置均是目前脱硫系统中常用的吸收塔液位測量装置,各有优缺点。

(1)裝置一使用的質量流量計精度高、穩定性好,數據的可重複性也很好,因此測量漿液的密度值可靠性高,提高了整套液位測量裝置的綜合精度,在脫硫技術剛引入國內時曾大量使用。但裝置本身結構複雜,采用了專門的測量管路、泵及大量閥門,增加了裝置的故障點,維護工作量大大增加。

(2)裝置二在裝置一的基礎上做了一些改進,主要是取消了專門的密度測量管路,將密度測量儀表直接安裝在吸收塔側壁上,密度測量采用了高精度的音叉密度計,大大簡化了測量裝置。缺點是目前適合脫硫工況的音叉密度計生産廠家很少,價格比較貴;而且還沒有與之配套的在線檢修閥門,面臨檢修儀表時需停運工藝系統的風險。

密度计算方法:ρ=ΔP/(gΔH)计算后得出。式中,ρ 为浆液密度计算值,ΔP 为差压,g 为重力加速度,ΔH 为差壓變送器2 个膜片的高度差。

液位计算方法:H=(P/ρg)+h 计算后得出。式中,H 为液位计算值,P 为压力,ρ 为密度计算公式中的浆液密度计算值,g 为重力加速度,h 为壓力變送器的安裝高度。

       采用本裝置測量漿池液位時,結構簡單,差壓變送器壓力變送器技術也非常成熟可靠,成本也較低。僅需安裝沖洗管路對儀表膜片和采樣管路定時沖洗,維護工作量相對較少。

麦德胜中国液位變送器600.png

四、結束語

       综上所述,各脱硫装置应根据自身的不同条件,如运行人员的技术水平、运行人员的工作强度要求以及脱硫系统停运对其他工艺系统的影响等因素,综合比较后选择合适的吸收塔液位測量装置,从而达到安全稳定、经济实用的效果。



標簽: 液位測量  
浏覽:
相關內容:液位測量  
返回顶部

分享到: